3.6.58 \(\int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{a+a \sec (c+d x)} \, dx\) [558]

3.6.58.1 Optimal result
3.6.58.2 Mathematica [C] (warning: unable to verify)
3.6.58.3 Rubi [A] (verified)
3.6.58.4 Maple [B] (verified)
3.6.58.5 Fricas [C] (verification not implemented)
3.6.58.6 Sympy [F(-1)]
3.6.58.7 Maxima [F]
3.6.58.8 Giac [F]
3.6.58.9 Mupad [F(-1)]

3.6.58.1 Optimal result

Integrand size = 43, antiderivative size = 250 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=-\frac {3 (5 A-5 B+7 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 a d}-\frac {(3 A-5 B+5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}+\frac {3 (5 A-5 B+7 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 a d}-\frac {(3 A-5 B+5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d}+\frac {(5 A-5 B+7 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 a d}-\frac {(A-B+C) \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))} \]

output
-1/3*(3*A-5*B+5*C)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d+1/5*(5*A-5*B+7*C)*sec(d 
*x+c)^(5/2)*sin(d*x+c)/a/d-(A-B+C)*sec(d*x+c)^(7/2)*sin(d*x+c)/d/(a+a*sec( 
d*x+c))+3/5*(5*A-5*B+7*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/a/d-3/5*(5*A-5*B+7*C 
)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/ 
2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d-1/3*(3*A-5*B+5*C)*(cos 
(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2 
^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d
 
3.6.58.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.46 (sec) , antiderivative size = 1307, normalized size of antiderivative = 5.23 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx =\text {Too large to display} \]

input
Integrate[(Sec[c + d*x]^(5/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a 
+ a*Sec[c + d*x]),x]
 
output
(Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2* 
I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*(-3*Sqrt[1 + E^( 
(2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2 
, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c 
+ d*x]^2))/(d*E^(I*d*x)*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])* 
(a + a*Sec[c + d*x])) - (Sqrt[2]*B*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + 
 d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*C 
sc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c 
))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sec[c/2]*(A + B 
*Sec[c + d*x] + C*Sec[c + d*x]^2))/(d*E^(I*d*x)*(A + 2*C + 2*B*Cos[c + d*x 
] + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])) + (7*Sqrt[2]*C*Sqrt[E^(I*(c 
+ d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c/2 + 
 (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^(( 
2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c 
 + d*x))])*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(5*d*E^(I*d*x 
)*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])) 
- (2*A*Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x 
)/2, 2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sin[c])/(d*(A + 2 
*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[Sec[c + d*x]]*(a + a*Sec[ 
c + d*x])) + (10*B*Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*Csc[c/2]*Ell...
 
3.6.58.3 Rubi [A] (verified)

Time = 1.04 (sec) , antiderivative size = 221, normalized size of antiderivative = 0.88, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.326, Rules used = {3042, 4572, 27, 3042, 4274, 3042, 4255, 3042, 4255, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a \sec (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{a \csc \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 4572

\(\displaystyle \frac {\int -\frac {1}{2} \sec ^{\frac {5}{2}}(c+d x) (a (3 A-5 B+5 C)-a (5 A-5 B+7 C) \sec (c+d x))dx}{a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \sec ^{\frac {5}{2}}(c+d x) (a (3 A-5 B+5 C)-a (5 A-5 B+7 C) \sec (c+d x))dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a (3 A-5 B+5 C)-a (5 A-5 B+7 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4274

\(\displaystyle -\frac {a (3 A-5 B+5 C) \int \sec ^{\frac {5}{2}}(c+d x)dx-a (5 A-5 B+7 C) \int \sec ^{\frac {7}{2}}(c+d x)dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a (3 A-5 B+5 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx-a (5 A-5 B+7 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4255

\(\displaystyle -\frac {a (3 A-5 B+5 C) \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )-a (5 A-5 B+7 C) \left (\frac {3}{5} \int \sec ^{\frac {3}{2}}(c+d x)dx+\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a (3 A-5 B+5 C) \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )-a (5 A-5 B+7 C) \left (\frac {3}{5} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx+\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4255

\(\displaystyle -\frac {a (3 A-5 B+5 C) \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )-a (5 A-5 B+7 C) \left (\frac {3}{5} \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\sec (c+d x)}}dx\right )+\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a (3 A-5 B+5 C) \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )-a (5 A-5 B+7 C) \left (\frac {3}{5} \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4258

\(\displaystyle -\frac {a (3 A-5 B+5 C) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )-a (5 A-5 B+7 C) \left (\frac {3}{5} \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a (3 A-5 B+5 C) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )-a (5 A-5 B+7 C) \left (\frac {3}{5} \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {a (3 A-5 B+5 C) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )-a (5 A-5 B+7 C) \left (\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {3}{5} \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {a (3 A-5 B+5 C) \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )-a (5 A-5 B+7 C) \left (\frac {2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {3}{5} \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

input
Int[(Sec[c + d*x]^(5/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Se 
c[c + d*x]),x]
 
output
-(((A - B + C)*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(d*(a + a*Sec[c + d*x]))) 
- (a*(3*A - 5*B + 5*C)*((2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sq 
rt[Sec[c + d*x]])/(3*d) + (2*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d)) - a*( 
5*A - 5*B + 7*C)*((2*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d) + (3*((-2*Sqrt 
[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*Sqrt[S 
ec[c + d*x]]*Sin[c + d*x])/d))/5))/(2*a^2)
 

3.6.58.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4572
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*Csc[e 
+ f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1)) 
   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - 
 A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m - n)))*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - 
b^2, 0] && LtQ[m, -2^(-1)]
 
3.6.58.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(784\) vs. \(2(276)=552\).

Time = 27.81 (sec) , antiderivative size = 785, normalized size of antiderivative = 3.14

method result size
default \(\text {Expression too large to display}\) \(785\)

input
int(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x,me 
thod=_RETURNVERBOSE)
 
output
-1/a*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((-A+B-C)*( 
cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2) 
^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c) 
,2^(1/2)))-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c) 
/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2/5*C/sin(1/2*d*x+1/ 
2*c)^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c 
)^2-1)*(24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*(sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^ 
(1/2)*sin(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1 
/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*cos(1/2*d*x+1/2*c)*sin(1/2 
*d*x+1/2*c)^2-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c), 
2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/ 
2*d*x+1/2*c)^2)^(1/2)+(2*B-2*C)*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+ 
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)) 
)+(2*A-2*B+2*C)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/ 
2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d 
*x+1/2*c)^2-(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2...
 
3.6.58.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 369, normalized size of antiderivative = 1.48 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=-\frac {5 \, {\left (\sqrt {2} {\left (-3 i \, A + 5 i \, B - 5 i \, C\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (-3 i \, A + 5 i \, B - 5 i \, C\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (\sqrt {2} {\left (3 i \, A - 5 i \, B + 5 i \, C\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (3 i \, A - 5 i \, B + 5 i \, C\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 9 \, {\left (\sqrt {2} {\left (5 i \, A - 5 i \, B + 7 i \, C\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (5 i \, A - 5 i \, B + 7 i \, C\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 \, {\left (\sqrt {2} {\left (-5 i \, A + 5 i \, B - 7 i \, C\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (-5 i \, A + 5 i \, B - 7 i \, C\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (9 \, {\left (5 \, A - 5 \, B + 7 \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (15 \, A - 10 \, B + 19 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (5 \, B - 2 \, C\right )} \cos \left (d x + c\right ) + 6 \, C\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{30 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
),x, algorithm="fricas")
 
output
-1/30*(5*(sqrt(2)*(-3*I*A + 5*I*B - 5*I*C)*cos(d*x + c)^3 + sqrt(2)*(-3*I* 
A + 5*I*B - 5*I*C)*cos(d*x + c)^2)*weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c)) + 5*(sqrt(2)*(3*I*A - 5*I*B + 5*I*C)*cos(d*x + c)^3 + s 
qrt(2)*(3*I*A - 5*I*B + 5*I*C)*cos(d*x + c)^2)*weierstrassPInverse(-4, 0, 
cos(d*x + c) - I*sin(d*x + c)) + 9*(sqrt(2)*(5*I*A - 5*I*B + 7*I*C)*cos(d* 
x + c)^3 + sqrt(2)*(5*I*A - 5*I*B + 7*I*C)*cos(d*x + c)^2)*weierstrassZeta 
(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 9*(sq 
rt(2)*(-5*I*A + 5*I*B - 7*I*C)*cos(d*x + c)^3 + sqrt(2)*(-5*I*A + 5*I*B - 
7*I*C)*cos(d*x + c)^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, c 
os(d*x + c) - I*sin(d*x + c))) - 2*(9*(5*A - 5*B + 7*C)*cos(d*x + c)^3 + 2 
*(15*A - 10*B + 19*C)*cos(d*x + c)^2 + 2*(5*B - 2*C)*cos(d*x + c) + 6*C)*s 
in(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2)
 
3.6.58.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+ 
c)),x)
 
output
Timed out
 
3.6.58.7 Maxima [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
),x, algorithm="maxima")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^(5/2)/(a*se 
c(d*x + c) + a), x)
 
3.6.58.8 Giac [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
),x, algorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^(5/2)/(a*se 
c(d*x + c) + a), x)
 
3.6.58.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \]

input
int(((1/cos(c + d*x))^(5/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + 
a/cos(c + d*x)),x)
 
output
int(((1/cos(c + d*x))^(5/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + 
a/cos(c + d*x)), x)